Optimization of Interval Type-2 Fuzzy Logic System By using A New Hybrid Method of Whale Optimization algorithm and Extreme Learning Machine

نویسندگان

چکیده

The problem of searching for the best values ​​of fuzzy logic parameters (T1FLS) is consider complex problems, and type-2 system (T2FLS) more complex, in special case interval (IT2FLS). Researchers have used many methods algorithms to solve this problem, among most important field are the)Meta-heuristic) algorithms. Because Meta-heuristic a high capacity practical field, so we one modern which Whale Optimization algorithm (WOA). We (WOA) together with Extreme Learning Machine (ELM) as hybrid find ​​for IT2FLS. Whereas, was estimate antecedent system, consequent parts system. simulation results show that proposed effective

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

solution of security constrained unit commitment problem by a new multi-objective optimization method

چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...

Type-1 and Type-2 fuzzy logic controller design using a Hybrid PSO-GA optimization method

In this paper we propose a Hybrid PSO–GA optimization method for automatic design of fuzzy logic controllers (FLC) to minimize the steady state error of a plant’s response. We test the optimal FLC obtained by the Hybrid PSO–GA method using benchmark control plants and an autonomous mobile robot for trajectory tracking control. The bio-inspired method is used to find the parameters of the member...

متن کامل

OPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM

This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...

متن کامل

First-order Interval Type-2 TSK Fuzzy Logic Systems Using a Hybrid Learning Algorithm

This article presents a new learning methodology based on a hybrid algorithm for interval type-2 TSK fuzzy logic systems (FLS). Using input-output data pairs during the forward pass of the training process, the interval type-2 TSK FLS output is calculated and the consequent parameters are estimated by recursive least-squares (RLS) method. In the backward pass, the error propagates backward, and...

متن کامل

Optimization of e-Learning Model Using Fuzzy Genetic Algorithm

E-learning model is examined of three major dimensions. And each dimension has a range of indicators that is effective in optimization and modeling, in many optimization problems in the modeling, target function or constraints may change over time that as a result optimization of these problems can also be changed. If any of these undetermined events be considered in the optimization process, t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ma?alla? Tikr?t li-l-?ul?m al-?irfa?

سال: 2022

ISSN: ['2415-1726', '1813-1662']

DOI: https://doi.org/10.25130/tjps.v26i2.129